6183 measured reflections

 $R_{\rm int} = 0.083$

2227 independent reflections

1391 reflections with $I > 2\sigma(I)$

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

(3,4-Dimethoxyphenyl)(4-fluorophenyl)methanone

Quanjian Lv* and Jianling Wang

Department of Quality Detection and Management, Zhengzhou College of Animal Husbandry Engineering, Zhengzhou 450011, People's Republic of China Correspondence e-mail: jyzhang2004@126.com

Received 22 May 2010; accepted 2 June 2010

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.004 Å; R factor = 0.056; wR factor = 0.173; data-to-parameter ratio = 12.8.

In the title compound, $C_{15}H_{13}FO_3$, the dihedral angle between the two aromatic rings is 52.78 (8)°. In the crystal, intermolecular C-H···O hydrogen bonds link molecules into chains running parallel to the c axis.

Related literature

For applications of benzophenone and its derivatives, see: Riechers et al. (1996); Khanum et al. (2009); Schlecht et al. (2008).

Experimental

Crystal data

C15H13FO3 $M_r = 260.25$ Monoclinic, $P2_1/c$ a = 10.8926 (9) Å b = 11.3632 (11) Å c = 10.8369 (10) Å $\beta = 108.285 (1)^{\circ}$

V = 1273.6 (2) Å³ Z = 4Mo $K\alpha$ radiation $\mu = 0.10 \text{ mm}^{-1}$ T = 298 K $0.48 \times 0.38 \times 0.15~\text{mm}$

Data collection

Bruker SMART CCD area-detector diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\min} = 0.952, T_{\max} = 0.985$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.056$	174 parameters
$wR(F^2) = 0.173$	H-atom parameters constrained
S = 1.00	$\Delta \rho_{\rm max} = 0.20 \ {\rm e} \ {\rm \AA}^{-3}$
2227 reflections	$\Delta \rho_{\rm min} = -0.32 \text{ e} \text{ \AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C7-H7\cdots O1^i$	0.93	2.58	3.343 (3)	139

Symmetry code: (i) $x, -y + \frac{3}{2}, z - \frac{1}{2}$.

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

We gratefully acknowledge financial support from the National Natural Science Foundation of China (No. 20572103).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ2456).

References

Khanum, S. A., Girish, V., Suparshwa, S. S., Khanum, N. F. (2009). Bioorg. Med. Chem. Lett. 19, 1887-1891.

Riechers, H., Albrecht, H.-P. & Amberg, W. (1996). J. Med. Chem. 39, 2123-2128..

Schlecht, C., Klammer, H., Frauendorf, H., Wuttke, W. & Jarry, H. (2008). Toxicology, 245, 11-17.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

supplementary materials

Acta Cryst. (2010). E66, o1585 [doi:10.1107/S1600536810021008]

(3,4-Dimethoxyphenyl)(4-fluorophenyl)methanone

Q. Lv and J. Wang

Comment

Benzophenone derivatives are an important class of compounds having a broad spectrum of applications in the chemical and biochemical fields (Riechers *et al.*, 1996; Khanum *et al.*, 2009), and are widely used as UV-screens to protect industrial products from light induced damage (Schlecht *et al.*, 2008). In order to develop new applications for benzophenone and its derivatives, structural modifications of benzophenone have been extensively investigated. As a contribution to this field, we report here the crystal structure of the title compound.

The molecular structure of title compound is shown in Fig. 1. The dihedral angle formed by the benzene rings $52.78 (8)^{\circ}$. In the crystal packing (Fig. 2), intermolecular C—H···O hydrogen bonds (Table 1) link molecules into chains running parallel to the *c* axis.

Experimental

To a solution of 1,2-dimethoxybenzene (138 g, 1.00 mol) in dichloromethane (2.00 l), AlCl₃ (199 g, 1.50 mol) was added. Then 4-fluorobenzoyl chloride (158 g, 2.00 mol) was added. The mixture was stirred at room temperature for 2 h, followed by filtration and purification by crystallization from ethyl acetate, giving the title compound as a colourless crystalline solid.

Refinement

All H atoms were placed geometrically and treated as riding on their parent atoms, with C—H = 0.93-0.96 Å and $U_{iso}(H) = 1.2U_{eq}(C)$ or $1.5U_{eq}(C)$ for methyl H atoms.

Figures

Fig. 1. The molecular structure of the compound, with atom labels and 50% probability displacement ellipsoids. Hydrogen atoms are omitted.

Fig. 2. Crystal packing of the title compound. Intermolecular hydrogen bonds are shown as dashed lines.

(3,4-Dimethoxyphenyl)(4-fluorophenyl)methanone

Crystal data

C ₁₅ H ₁₃ FO ₃	F(000) = 544
$M_r = 260.25$	$D_{\rm x} = 1.357 \ {\rm Mg \ m^{-3}}$
Monoclinic, $P2_1/c$	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: -P 2ybc	Cell parameters from 1872 reflections
a = 10.8926 (9) Å	$\theta = 2.7 - 26.1^{\circ}$
b = 11.3632 (11) Å	$\mu = 0.10 \text{ mm}^{-1}$
c = 10.8369 (10) Å	T = 298 K
$\beta = 108.285 \ (1)^{\circ}$	Needle, colourless
$V = 1273.6 (2) \text{ Å}^3$	$0.48\times0.38\times0.15~mm$
Z = 4	

Data collection

Bruker SMART CCD area-detector diffractometer	2227 independent reflections
Radiation source: fine-focus sealed tube	1391 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.083$
phi and ω scans	$\theta_{\text{max}} = 25.0^{\circ}, \ \theta_{\text{min}} = 2.0^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)	$h = -7 \rightarrow 12$
$T_{\min} = 0.952, T_{\max} = 0.985$	$k = -13 \rightarrow 13$
6183 measured reflections	$l = -12 \rightarrow 12$

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.056$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.173$	H-atom parameters constrained
<i>S</i> = 1.00	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0915P)^{2}]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
2227 reflections	$(\Delta/\sigma)_{\rm max} < 0.001$
174 parameters	$\Delta \rho_{max} = 0.20 \text{ e } \text{\AA}^{-3}$
0 restraints	$\Delta \rho_{min} = -0.32 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
F1	0.13858 (16)	0.52452 (18)	-0.33034 (17)	0.0864 (7)
01	0.46324 (18)	0.62209 (18)	0.24672 (19)	0.0638 (6)
O2	0.88706 (15)	0.85244 (17)	0.40525 (17)	0.0555 (6)
O3	0.86314 (15)	1.01546 (15)	0.23481 (17)	0.0512 (5)
C1	0.4782 (2)	0.6672 (2)	0.1495 (3)	0.0433 (6)
C2	0.5825 (2)	0.7552 (2)	0.1622 (2)	0.0384 (6)
C3	0.6868 (2)	0.7580 (2)	0.2777 (2)	0.0420 (6)
Н3	0.6928	0.7015	0.3414	0.050*
C4	0.7801 (2)	0.8432 (2)	0.2976 (2)	0.0405 (6)
C5	0.7682 (2)	0.9316 (2)	0.2037 (2)	0.0392 (6)
C6	0.6666 (2)	0.9291 (2)	0.0898 (2)	0.0416 (6)
H6	0.6597	0.9865	0.0269	0.050*
C7	0.5739 (2)	0.8405 (2)	0.0688 (2)	0.0399 (6)
H7	0.5057	0.8387	-0.0086	0.048*
C8	0.8996 (3)	0.7711 (3)	0.5078 (3)	0.0682 (9)
H8A	0.8272	0.7790	0.5397	0.102*
H8B	0.9782	0.7867	0.5768	0.102*
H8C	0.9020	0.6925	0.4761	0.102*
С9	0.8510 (3)	1.1108 (3)	0.1468 (3)	0.0664 (9)
H9A	0.8506	1.0811	0.0637	0.100*
H9B	0.9225	1.1637	0.1798	0.100*
H9C	0.7715	1.1519	0.1374	0.100*
C10	0.3889 (2)	0.6332 (2)	0.0193 (2)	0.0396 (6)
C11	0.2630 (2)	0.6010 (2)	0.0084 (3)	0.0475 (7)
H11	0.2355	0.6042	0.0813	0.057*
C12	0.1782 (3)	0.5644 (2)	-0.1084 (3)	0.0545 (7)
H12	0.0938	0.5431	-0.1154	0.065*
C13	0.2215 (3)	0.5604 (3)	-0.2141 (3)	0.0554 (8)
C14	0.3456 (3)	0.5881 (3)	-0.2083 (3)	0.0559 (8)
H14	0.3728	0.5816	-0.2812	0.067*
C15	0.4290 (2)	0.6260 (2)	-0.0911 (3)	0.0462 (7)
H15	0.5131	0.6470	-0.0854	0.055*
Atomic displacement	nt parameters $(Å^2)$			

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
F1	0.0788 (12)	0.1100 (15)	0.0628 (12)	-0.0321 (12)	0.0113 (9)	-0.0168 (10)

supplementary materials

01	0.0677 (13)	0.0799 (14)	0.0502 (12)	-0.0215 (11)	0.0274 (10)	0.0033 (10)
O2	0.0450 (11)	0.0706 (13)	0.0473 (11)	-0.0113 (9)	0.0094 (9)	0.0127 (9)
O3	0.0463 (11)	0.0513 (11)	0.0573 (12)	-0.0076 (9)	0.0183 (8)	0.0060 (9)
C1	0.0400 (14)	0.0476 (15)	0.0491 (16)	0.0021 (12)	0.0239 (12)	0.0029 (12)
C2	0.0338 (13)	0.0456 (14)	0.0422 (14)	0.0041 (11)	0.0210 (10)	-0.0028 (11)
C3	0.0398 (14)	0.0480 (15)	0.0446 (15)	0.0002 (12)	0.0223 (11)	0.0055 (12)
C4	0.0317 (13)	0.0504 (15)	0.0427 (15)	0.0043 (12)	0.0165 (11)	0.0016 (12)
C5	0.0366 (13)	0.0412 (14)	0.0457 (15)	0.0032 (12)	0.0215 (11)	-0.0022 (11)
C6	0.0440 (14)	0.0427 (14)	0.0433 (14)	0.0050 (12)	0.0210 (11)	0.0036 (11)
C7	0.0353 (13)	0.0463 (14)	0.0402 (14)	0.0060 (12)	0.0148 (10)	-0.0010 (11)
C8	0.0643 (19)	0.080 (2)	0.0492 (17)	-0.0084 (17)	0.0021 (14)	0.0185 (16)
C9	0.076 (2)	0.0543 (17)	0.069 (2)	-0.0170 (16)	0.0224 (16)	0.0105 (15)
C10	0.0358 (13)	0.0402 (14)	0.0490 (16)	-0.0007 (11)	0.0225 (11)	0.0006 (11)
C11	0.0426 (14)	0.0522 (16)	0.0568 (17)	-0.0010 (13)	0.0286 (12)	0.0019 (13)
C12	0.0389 (14)	0.0595 (18)	0.0688 (19)	-0.0084 (14)	0.0223 (13)	-0.0028 (15)
C13	0.0566 (17)	0.0554 (18)	0.0515 (17)	-0.0119 (15)	0.0132 (13)	-0.0072 (14)
C14	0.0630 (18)	0.0610 (18)	0.0541 (18)	-0.0105 (15)	0.0332 (14)	-0.0102 (14)
C15	0.0396 (14)	0.0513 (15)	0.0560 (17)	-0.0068 (13)	0.0267 (12)	-0.0057 (13)

Geometric parameters (Å, °)

F1—C13	1.362 (3)	C8—H8A	0.9600
O1—C1	1.227 (3)	С8—Н8В	0.9600
O2—C4	1.370 (3)	C8—H8C	0.9600
O2—C8	1.419 (3)	С9—Н9А	0.9600
O3—C5	1.368 (3)	С9—Н9В	0.9600
O3—C9	1.422 (3)	С9—Н9С	0.9600
C1—C2	1.488 (3)	C10—C11	1.388 (3)
C1—C10	1.493 (3)	C10—C15	1.399 (3)
C2—C7	1.383 (3)	C11—C12	1.377 (4)
C2—C3	1.402 (3)	C11—H11	0.9300
C3—C4	1.370 (3)	C12—C13	1.370 (4)
С3—Н3	0.9300	C12—H12	0.9300
C4—C5	1.407 (4)	C13—C14	1.370 (4)
C5—C6	1.376 (3)	C14—C15	1.378 (4)
C6—C7	1.393 (3)	C14—H14	0.9300
С6—Н6	0.9300	C15—H15	0.9300
С7—Н7	0.9300		
C4—O2—C8	117.6 (2)	Н8А—С8—Н8С	109.5
С5—О3—С9	117.5 (2)	H8B—C8—H8C	109.5
01—C1—C2	120.3 (2)	О3—С9—Н9А	109.5
O1—C1—C10	118.7 (2)	О3—С9—Н9В	109.5
C2C1C10	120.9 (2)	Н9А—С9—Н9В	109.5
C7—C2—C3	119.2 (2)	О3—С9—Н9С	109.5
C7—C2—C1	121.9 (2)	Н9А—С9—Н9С	109.5
C3—C2—C1	118.6 (2)	Н9В—С9—Н9С	109.5
C4—C3—C2	120.6 (2)	C11—C10—C15	118.5 (2)
С4—С3—Н3	119.7	C11—C10—C1	118.8 (2)
С2—С3—Н3	119.7	C15—C10—C1	122.6 (2)

C3—C4—O2	125.4 (2)	C12-C11-C10	121.2 (2)
C3—C4—C5	119.7 (2)	C12—C11—H11	119.4
O2—C4—C5	114.9 (2)	C10—C11—H11	119.4
O3—C5—C6	124.7 (2)	C13—C12—C11	118.1 (2)
O3—C5—C4	115.4 (2)	C13—C12—H12	121.0
C6—C5—C4	119.9 (2)	C11—C12—H12	121.0
C5—C6—C7	120.0 (2)	F1—C13—C12	118.7 (2)
С5—С6—Н6	120.0	F1—C13—C14	118.0 (3)
С7—С6—Н6	120.0	C12—C13—C14	123.2 (3)
C2—C7—C6	120.5 (2)	C13—C14—C15	118.0 (3)
С2—С7—Н7	119.8	C13—C14—H14	121.0
С6—С7—Н7	119.8	C15—C14—H14	121.0
O2—C8—H8A	109.5	C14—C15—C10	120.9 (2)
O2—C8—H8B	109.5	C14—C15—H15	119.5
H8A—C8—H8B	109.5	C10-C15-H15	119.5
O2—C8—H8C	109.5		
O1—C1—C2—C7	-153.7 (3)	C3—C2—C7—C6	-0.9 (3)
C10-C1-C2-C7	25.5 (3)	C1—C2—C7—C6	173.2 (2)
O1—C1—C2—C3	20.4 (3)	C5—C6—C7—C2	0.5 (3)
C10-C1-C2-C3	-160.4 (2)	O1-C1-C10-C11	30.4 (3)
C7—C2—C3—C4	-0.7 (4)	C2-C1-C10-C11	-148.8 (2)
C1—C2—C3—C4	-175.1 (2)	O1—C1—C10—C15	-145.9 (3)
C2—C3—C4—O2	-178.5 (2)	C2-C1-C10-C15	34.9 (3)
C2—C3—C4—C5	2.7 (4)	C15-C10-C11-C12	-1.0 (4)
C8—O2—C4—C3	-3.3 (4)	C1-C10-C11-C12	-177.4 (2)
C8—O2—C4—C5	175.4 (2)	C10-C11-C12-C13	0.2 (4)
C9—O3—C5—C6	4.3 (3)	C11—C12—C13—F1	-179.9 (2)
C9—O3—C5—C4	-176.1 (2)	C11—C12—C13—C14	1.6 (5)
C3—C4—C5—O3	177.30 (19)	F1-C13-C14-C15	179.1 (2)
O2—C4—C5—O3	-1.6 (3)	C12-C13-C14-C15	-2.4 (5)
C3—C4—C5—C6	-3.1 (4)	C13-C14-C15-C10	1.5 (4)
O2—C4—C5—C6	178.1 (2)	C11-C10-C15-C14	0.2 (4)
O3—C5—C6—C7	-179.0 (2)	C1-C10-C15-C14	176.5 (2)
C4—C5—C6—C7	1.4 (4)		
<u>_</u>			

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H…A	$D \cdots A$	$D\!\!-\!\!\mathrm{H}^{\ldots}\!A$
C7—H7···O1 ⁱ	0.93	2.58	3.343 (3)	139.
Symmetry codes: (i) x , $-y+3/2$, $z-1/2$.				

Fig. 1

Fig. 2